XFP 10G 1550nm Single mode Optical Transceiver

Description

The BlueOptics© BO31J15640D XFP transceiver is a high performance, cost effective module supporting a datarate up to 10 Gbps with 40 Kilometer link length on single mode fiber.

BlueOptics© transceivers are 100\% compliant with XFP Multi-Source Agreement (MSA).

All BlueOptics© XFP transceivers are always equipped with digital diagnostic function compliant to MSA SFF8472.

Using digital diagnostic, BlueOptics© XFP transceivers provide the following real time information:

- Supply voltage
- Laser bias current
- Laser average output power
- Laser received input power
- Temperature

The transceiver consists of five sections: An EML transmitter, a PIN photodiode, a trans-impedance preamplifier (TIA), the LD Driver and the digital diagnostic function.

Applications

Features

$\checkmark \quad 9.95 \mathrm{~Gb} / \mathrm{s}$ to $11.3 \mathrm{~Gb} / \mathrm{s}$ serial optical interface
$\checkmark \quad$ EML laser transmitter
$\checkmark \quad$ PIN photo-detector
\checkmark Hot-pluggable XFP footprint compliant to INF-8077
\checkmark Duplex LC/UPC type pluggable optical interface
\checkmark 2-wire interface for management
\checkmark Metal enclosure, for lower EMI
\checkmark RoHS compliant and lead-free
$\checkmark \quad$ Single +3.3 V power supply
\checkmark Compliant with SFF-8472
\checkmark Case operating temperature

- Commercial: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Extended: $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
- Industrial: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\checkmark 10G Fibre Channel-1413-D
\checkmark SONET/ SDH - OC192/SDH-64
$\checkmark \quad$ OC-192 over FEC - G. 709
$\checkmark \quad$ 10GBs Ethernet over G. 709
$\checkmark \quad$ 10G Ethernet - IEEE802.3ae

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended.

Laser Safety: Even small radiation emitted by laser devices can be dangerous to human eyes and lead to permanent eye injuries. Be sure to avoid eye contact with direct or indirect radiation.

Warranty

Every BlueOptics© transceiver comes with a 5 year replacement warranty and lifetime support.
For a warranty inquiry, please contact your CBO sales representative.
This warranty only covers the first user of the equipment.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by CBO before they become applicable to any particular order or contract. In accordance with the CBO policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of CBO or others.

Further details are available from any CBO sales representative.

Installation

Before installation attach an ESD-preventive wrist to ensure not to damage the transceiver or hardware.

BlueOptics© BO31J15640D can be installed in any Small Form Factor Pluggable+ (XFP) port. You can install the BO31J15640D regardless if the system is powered on or off, because it is hot-swappable.

Insert the transceiver into the SFP port and remove the dust cap.

You can now connect your cable.

Order Information

Part No.	Temp.	DDM
BO31J15640D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	\checkmark
BO31J15640DEX	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	\checkmark
BO31J15640DIN	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	\checkmark

Regulatory Compliance

Feature	Standard	Co.
Electrostatic Discharge (ESD)	-IEC/EN 61000-4- 2	\checkmark
Electromagnetic Interference (EMI)	- FCC Part 15 Class B EN 55022 - Class B (CISPR 22A)	\checkmark
Laser Eye Safety	- FDA 21CFR 1040.10, 1040.11 -IEC/EN 60825-1, 2	Class 1 \checkmark
Component Recognition	-IEC/EN 60950, UL	\checkmark
RoHS	-2002/95/EC	\checkmark
EMC	-EN61000-3	\checkmark

1. Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit
Storage Temperature	Ts	-40		85	oC
Storage Ambient Humidity	HA	5		95	$\%$

2. Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit	Note
		0		70		BO31J15640D
		-10		80	OC	BO31J15640DEX
		-40		85		BO31J15640DIN
		5		70	$\%$	
				40	KM	
Coupled Fiber	Single mode fiber					

3. Electrical Interface Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Note
Power Supply Voltage	Vcc	3.13	3.3	3.45	V	
Signal Input Voltage	Icc			450	mA	
Transmitter						
Input differential impedance	Rin		100		Ω	1
Single ended data input swing	Vin,pp	120		1000	mV	
Transmit Disable Voltage	VD	2.0		Vcc	V	
Transmit Enable Voltage	VEN	GND		GND+0.8	V	2
Transmit Disable Assert Time				10	$\mu \mathrm{s}$	
Receiver						
Differential data output swing	Vout,pp	600	650	800	mV	3
Data output rise time	tr			40	Ps	4
Data output fall time	tf			40	Ps	4
LOS Fault	VLOS fault	Vcc-0.5		VcchOST	V	5
LOS Normal	VLOS norm	GND		GND+0.8	V	5
Power Supply Rejection	PSR	100			mVpp	6

Notes:

1. Internally AC coupled.
2. Or open circuit.
3. Into 100Ω differential termination.
4. $20-80 \%$
5. LOS is an open collector output. Should be pulled up with $4.7 \mathrm{~K} \Omega$ on the host board.
6. All transceiver specifications are compliant with a power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value through the power supply filtering network shown on page 23 of the Small Form factor Pluggable (SFP) Transceiver Multi Source Agreement (MSA), September 14, 2000.

4. Transmitter Specifications - Optical

Parameter	Symbol	Min.	Typ.	Max.	Unit	Note
Average Output Power	Pout	-1		4	dBm	
Extinction Ratio	ER	8.2			dB	
Center Wavelength	λ C	1530		1570	nm	EML Laser
Average Launch power of transmitter	POFF			-30	dBm	
Transmitter and Dispersion Penalty	TDP			2	dBm	
RIN	RIN		-130	$\mathrm{~dB} / \mathrm{Hz}$		
Output Eye Mask	Compliant with IEEE802.3ae					
(class 1 laser safety)						

5. Receiver Specifications - Optical

Parameter	Symbol	Min.	Typ.	Max.	Unit	Note
Input Optical Wavelength	$\lambda_{\text {IN }}$	1270		1610	nm	
Receiver Sensitivity	$\mathrm{PIN}_{\text {IN }}$			-16.5	dBM	1
Input Saturation Power (Overload)	PSAT	0.5			dBm	
LOS Assert	PA_{A}	-32			dBm	
LOS De-assert	PD_{D}			-18	dBm	
LOS Hysteresis	$\mathrm{PA}_{\mathrm{AD}}$	0.5			dB	

Notes:

1. Measured with Light source $1550 \mathrm{~nm}, \mathrm{ER}=8.2 \mathrm{~dB} ; \mathrm{BER}=<10^{-12} @ P R B S=2^{31}-1$ non-return-to-zero.

6. XFP to Host Connector Pin Out

Pin	Symbol	Name / Description	Note
1	GND	Module Ground	1
2	VEE5	Optional -5.2 Power Supply - Optional	
3	Mod-Desel	Module De-select; When held low allows the module to respond to 2wire serial interface commands	
4	Interrupt	Interrupt (bar); Indicates presence of an important condition which can read over the serial 2-wire interface	2
5	TX_DIS	Transmitter Disable; Transmitter laser source turned off	
6	VCC5	+5 Power Supply - Optional	
7	GND	Module Ground	1
8	VCC3	+3.3V Power Supply	
9	VCC3	+3.3V Power Supply	
10	SCL	Serial 2-wire interface clock	
11	SDA	Serial 2-wire interface data line	2
12	Mod_Abs	Module Absent; Indicates module is not present. Grounded in the module.	2
13	Mod_NR	Module Not Ready; CBO defines it as a logical OR between RX_LOS and Loss of Lock in TX/RX.	2
14	RX_LOS	Receiver Loss of Signal indicator	2
15	GND	Module Ground	1
16	GND	Module Ground	1
17	RD-	Receiver inverted data output	
18	RD+	Receiver non-inverted data output	
19	GND	Module Ground	1
20	VCC2	+1.8V Power Supply - Optional	
		Power Down; When high, places the module in the low power stand-by mode and on the falling edge of P _Down initiates a module reset	

B031J15640D
Optical Transceiver
XFP 10GBase-ER Duplex 40KM
Datasheet - Rev. 1.1

		Reset; The falling edge initiates a complete reset of the module including the 2-wire serial interface, equivalent to a power cycle	
22	VCC2	$+1.8 V$ Power Supply - Optional	
23	GND	Module Ground	Reference Clock non-inverted input, AC coupled on the host board - Optional
24	RefCLK+	Reference Clock inverted input, AC coupled on the host board - Optional	3
25	RefCLK-	Module Ground	1
26	GND	Module Ground	1
27	GND	Transmitter inverted data input	
28	TD-	Transmitter non-inverted data input	1
29	TD+	Module Ground	1
30	GND		

Notes:

1. Module circuit ground is isolated from module chassis ground within the module.
2. Open collector; should be pulled up with $4.7 \mathrm{k} \Omega-10 \mathrm{k} \Omega$ on host board to a voltage between 3.15 V and 3.6V.
3. Reference Clock input not required. If present, it will be ignored.

Pinout of Connector Block on Host Board

7. EEPROM Information

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceivers capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8 -bit address 1010000X (AOh).

Data Address	Field Size (Bytes)	Name of Field	Contents (Hex)	Description
128	1	Identifier	XX	Formfactor
129	1	Ext. Identifier	XX	
130	1	Connector	XX	
131-138	8	Transceiver	$\begin{aligned} & \text { XX XX XX XX XX XX XX } \\ & \text { XX } \end{aligned}$	Transmittter Code
139	1	Encoding	XX	
140	1	BR-Min	XX	Minimum bit rate, units of $100 \mathrm{MBits} / \mathrm{s}$
141	1	BR-Max	XX	Maximum bit rate, units of $100 \mathrm{MBits} / \mathrm{s}$
142	1	Length ($9 \mu \mathrm{~m}$) km	XX	Max. link length in KM
143	1	Length ($9 \mu \mathrm{~m}$) 100m	XX	Max. link length in M
144	1	Length ($50 \mu \mathrm{~m}$) 10m	XX	Max. link length in M
145	1	Length($62.5 \mu \mathrm{~m}$) 10 m	XX	Max. link length in M
146	1	Length (Copper)	XX	Max. link length in M
147	1	Device Tech	XX	Device technology
148-163	16	Vendor name	XX	Vendor name - OEM
164	1	CDR Support	XX	CDR Rate Support
165-167	3	Vendor OUI	XX XX XX	
168-183	16	Vendor PN	$\begin{aligned} & \text { XX XX XX XX XX XX XX } \\ & \text { XX XX XX XX XX XX XX } \\ & \text { XX XX } \end{aligned}$	Product Number depending on Part
184-185	2	Vendor rev	XX XX XX XX	Vendor revision
186-187	2	Wavelength	XX XX	Transceiver Wavelength
188-189	2	Wavelength tolerance	XX	Guaranteed range of laser wavelength
190	1	Max Case Temp	XX	Checksum of bytes 0- 62
191	1	CC BASE	XX	Checksum of bytes 0- 62
192-195	4	Power Supply	XX XX XX XX	Power supply current requirements and max power dissipation
196-211	16	Vendor SN	XX	Part serial number
212-219	8	Vendor date code	$\begin{aligned} & \text { XX XX XX XX XX XX } 20 \\ & 20 \end{aligned}$	Year, Month, Day
220	1	Diagnostic Monitoring Type	$\begin{aligned} & \text { XX XX XX XX XX XX } 20 \\ & 20 \end{aligned}$	Year, Month, Day
221	1	Enhanced Options	XX	Indicates which optional enhanced features are implemented (if any) in the transceiver

B031J15640D
Optical Transceiver
XFP 10GBase-ER Duplex 40KM
Datasheet - Rev. 1.1

222	1	Aux Monitorin	XX	Defines quantities reported by Aux. A/D channels
223	1	CC_EXT	Check code for the Extended ID Fields	
$224-255$	32	Vendor Specific	XX XX XX XX XX XX XX XX XX XX XX X	

8. Digital Diagnostics / Digital Optical Monitoring

The transceiver provides serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration are all implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.
9. Mechanical Specifications (Unit: mm)

Units in mm

UNLATCHED

